
How Do Developers Follow Security-Relevant Best
Practices When Using NPM Packages?

Md Mahir Asef Kabir, Ying Wang, Danfeng(Daphne) Yao, Na
Meng

#IEEESecDev https://secdev.ieee.org/2022 1

Background

Popular Cross-Platform
JS Runtime Platform

Default Package
Manager of Node.js

Developers Publish & Reuse NPM packages to increase
productivity and improve Software Quality

2

Technical Issue

Usage of NPM packages can expose client applications to
security risks. E.g., security experts found -

- Vulnerable packages can cause attacks such
as - Software Supply Chain attack [1]

- Vulnerability in library “netmask”, can cause
attacks such as - Malware Delivery [2]

- Can affect more than 278,000 applications
3

Recommended Mitigation

Follow Best Practices (BP) recommended by domain experts

● BP1: Scan vulnerabilities using “npm audit” and remove
vulnerabilities with “npm audit fix”

● BP2: Scan and/or remove unused and duplicated
packages using “depcheck” and “npm dedupe”

● BP3: Enforce the lock file package-lock.json to pin
library dependency versions 4

BP1: Scan & Remove Vulnerable Dependencies

● Projects can contain malicious & vulnerable dependencies
that can expose the applications to threats

● “npm audit” can scan & show the
report of known vulnerabilities

● “npm audit fix” can install compatible
versions of the reported known vulnerabilities

5

BP2: Scan & Remove Unused/Duplicate Dependencies

Unused/Duplicate dependencies can cause attack surface
to grow

6

BP3: Pin dependency versions using package-lock.json

Using dependency version range can cause 2 problems -

● Non-deterministic package downloads
● Pulling in vulnerable or malicious version from the range

7

"dependencies": {
 "dependency1":
 "^1.4.0"
}

"dependencies": {
 "dependency1": {

 “version”: 1.4.0,
 …
 }
}

package.json package-lock.json

Our Research - Empirical Study

● RQ1: How well did developers follow best practices?

● RQ2: How well can existing tools address developers’
violations of best practices?

● RQ3: In the scenarios when developers do not follow best
practices, what are the reasons?

8

Outline

● Background
● Technical Issue
● Recommended Mitigation
● Our Research
● Methodology
● Experiment Results
● Our Recommendations
● Related Work
● Conclusion

9

Methodology

10

Data Creation

Step 1: Investigating how well developers follow BPs (RQ1)

Step 2: Investigating how well existing tools perform (RQ2)

Step 3: Investigating what developers think (RQ3)

Data Creation

11

1000 original
repositories

980 filtered
repositories

919 filtered
repositories

841 final
repositories

Have GitHub
repository

Have
package.json

Unique
repositories

Step 1: Investigating how well developers follow BPs (RQ1)

12

BP1: Vulnerable
Dependencies

BP2: Unused
/Duplicates

BP3: Lock Files ● Checked version spec in package.json
● Checked existence of package-lock.json

Step 2: Investigating how well existing tools perform (RQ2)

13

BP1: Vulnerable
Dependencies

BP2: Duplicates

BP3: Lock Files ● Lock file is automatically generated
when “npm” modifies dependency tree

Step 3: Investigating what developers think (RQ3)

14

Sampled 20 violations for each BP

Created Pull Requests/Issues to interact with Developers

Described BP, found-violations, & suggested-solutions

Asked about thoughts on the PR, & reason for the violation

Experiment Result: How well developers follow BPs (RQ1)

15

460 out of 841 programs had
vulnerabilities reported

755 out of 841 programs had
unused dependencies

698 out of 841 programs had
duplicate dependencies

548 out of 841 programs had
not pinned library versions

Most developers did not seem to follow the BPs

Experiment Result: How well existing tools work (RQ2)

16

“npm audit fix” removed all
vulnerabilities in 55

programs

Existing tools are not sufficient enough to maintain BPs

“npm dedupe” removed all
duplicates in 10 & partially
removed in 467 programs

Experiment Result: What developers think (RQ3)

17

Some felt npm-audit to be
broken for having false positives

Most considered reported
unused dependencies to be

false positives

Most did not worry about
duplicate dependencies

Most did not care about
reproducible builds

Most developers are not convinced with the BPs

User Study

Received
22 responses

For 4 projects
developers
are partially
positive

18

User Study - False Positives

19

“npm audit” does not provide
exploit. Developers ignored

dev/test dependencies

Detected package was used.
Can cause no run-time issue

Developers ignored test
dependencies. Expected

“npm i” to be enough

Developers expected
consumers to use lock-file

instead of them

Our Recommendations

● For Developers: Generate and commit lock files to avoid
hard-to-reproduce bugs

● For Tool Builders: Improve existing tools

● For Researchers: Cautiously use the existing tools in
research, as they might not be accurate

20

Related Work

● Wittern et al. found out that package dependencies inc-
reases over time, even for the same core set of packages [4]

● Cogo et al. explored why developers downgrade package
dependencies [5]

● Decan et al. [6] and Zerouali et al. [7] studied how soon
developers updated their dependencies after the new
package releases became available

21

Conclusion

● This study assesses how developers follow security related
best practices when using NPM packages

● Developers recommend to use certain tools to scan or remove
vulnerable, unused, & duplicate dependencies, and to add lock
files

● The current tools seldom fix all violations, and developers
rarely treat tool outputs seriously

● In future, we need to define BPs better, and build better tools
22

References

[1] “Software supply chain attacks – everything you need to know,”
https://portswigger.net/daily-swig/software-supply-chain-attacks-everything-you-ne
ed-to-know, 2021.

[2] “Vulnerability in ’netmask’ npm Package Affects 280,000 Projects,”
https://www.securityweek.com/vulnerability-netmask-npm-package-affects-280000
-projects, 2021.

[3] “npm rank,” https://gist.github.com/anvaka/8e8fa57c7ee1350e3491, 2020.

[4] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR). IEEE, 2016, pp. 351–361.

23

References (Contd.)

[5] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of dependency
downgrades in the npm ecosystem,” IEEE Transactions on Software Engineering,
pp. 1–1, 2019.

[6] A. Decan, T. Mens, and E. Constantinou, “On the evolution of technical lag in
the npm package dependency network,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Sep. 2018, pp. 404–414.

[7] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. Gonz´alez- Barahona,
“An empirical analysis of technical lag in npm package dependencies,” in New
Opportunities for Software Reuse, R. Capilla, B. Gallina, and C. Cetina, Eds.
Cham: Springer International Publishing, 2018, pp. 95–110.

[image-3] https://www.keepersecurity.com/threats/supply-chain-attack.html
24

https://www.keepersecurity.com/threats/supply-chain-attack.html

